
UCRL-JC-133177
PREPRINT

The Quandary of Benchmarking Broadcasts

B.R. de Supinski
N.T. Karonis

This paper was prepared for submittal to the
8th International Symposium on High Performance Distributed Computing

Redondo Beach, CA
August 341999

February 5,1999

This is a preprint of a paper intended for publication in a journal or proceedings.
Since changes may be made before publication, this preprint is made available with

--AL- .

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

The Quandary of Benchmarking Broadcasts

Bronis R. de Supinski
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 9455 1
bronis @ llnl.gov

Nicholas T. Karonis
High-Performance Computing Laboratory

Department of Computer Science
Northern Illinois University

DeKalb, IL 60115
karonis @niu.edu

Abstract: A message passing library’s implementation of broadcast communication can
significantly affect the performance of applications built with that library. In order to choose
between similar implementations or to evaluate available libraries, accurate measurements of
broadcast performance are required. As we demonstrate, existing methods for measuring broad-
cast performance are either inaccurate or inadequate. Fortunately, we have designed an accurate
method for measuring broadcast performance.

Measuring broadcast performance is not simple. Simply sending one broadcast after
another allows them to proceed through the network concurrently, thus resulting in accurate per
broadcast timings. Existing methods either fail to eliminate this pipelining effect or eliminate it by
introducing overheads that are as difficult to measure as the performance of the broadcast itself.
Our method introduces a measurable overhead to eliminate the pipelining effect.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract no. W-7405-Eng-48.

MPI collective communication operations allow communication involving several tasks to
be specified with a single set of function calls. Benchmarking these collective communications is
important. Accurate measurements allow implementers to evaluate different algorithmic choices.
Users could use the benchmarks to choose between different available implementations. In addi-
tion, accurate and complete measurements could guide use of a given implementation to improve
application performance. In short, the parallel processing community needs accurate, succinct and
complete measurements of the performance of collective communications.

Benchmarking collective communications is a hard problem. Since collective communica-
tions inherently involve multiple tasks, complete characterization of their behavior could require
an overwhelming amount of data. Worse, accurate measurement of their behavior is difficult due
to the possibility of concurrency between successive collective communications. Some bench-
marks use knowledge of the communication algorithm to predict the timing of events and, thus,
reduce concurrency between the collective communications that they measure. However, accurate
event timing predictions are often impossible since network delays and local processing over-
heads are stochastic. Further, reasonable predictions are not possible if source code of the imple-
mentation is unavailable to the benchmarker.

We focus on measuring the performance of broadcast communication. First, we discuss
the performance properties of collective communications, based on a model derived from the
LogP communication model. Then, we demonstrate that several methods previously used to mea-
sure broadcast performance not only fail to measure several important properties but can inaccu-
rately measure the properties that they do measure. Finally, we present our accurate method for
measuring broadcast performance and discuss how to extend it other MPI collective operations.

Section 1: Modeling Collective Communications
A method to benchmark implementations of collective communications needs to measure

several properties. Almost all collective communication benchmarks attempt to measure the time
required to complete the communication, from its first send until its last receive. Although this is
an important quantity, these methods overlook several other important properties, such as local
processing overheads and the potential to overlap computation with communication. In this sec-
tion, we use a model of collective communications based on the 1ogP model to characterize the
important performance properties of collective communications

In the LogP model, four parameters capture point-to-point communication [4,5]. The send
overhead, o,, is the time during which a processor is sending a message, while the receive over-
head, o, is the portion of the time that a processor is receiving a message that cannot be overlap
with the message transmission. L, is the (wire) latency, the time that a message actually spends in
transit from its source to its destination; the more conventional definition of message latency is
equal to o,+ L +o, The final parameter, the gap, g, measures the ability to overlap computation
and communication while fully utilizing the communication system and is equal to the minimum
interval between consecutive message sends or receives.

We extend the LogP model to capture collective communications more accurately. Our
extensions apply to both asynchronous (the collective communications in MPI that take a root
argument) and synchronous collective communications [3]. The per processor overhead is the
time, Oi, spent sending and receiving messages by each processor, i, that participates in the collec-
tive communication. The per processor gap is the minimum interval of time, gi, between consecu-
tive occurrences of the same collective communication at processor i. Finally, each message used

time M
task

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Figure I: Time Line of a 16 Task MPICH Broadcast

in the collective communication has some wire latency, L, that is the time the message actually
spends in transit. Figure I shows the time line of a 16 task broadcast for the binomial tree algo-
rithm used in MPICH‘that we use to illustrate our extended model. In our figures, we assume that
L and the time spent sending or receiving each message are constant. In general, these quantities
are not constant due to network contention and optimizations like message forwarding.

Most collective communication benchmarks attempt to measure the total time that it takes
to complete the communication, which is its operation latency, OL. In Figure I, OL= t, - to, the
difference between the time at which the last processor finishes the operation and the time at
which the first processor begins the operation. OL is the important latency for collective commu-
nications; a method that measures OL without measuring L would be sufficient. Several bench-
mark methods attempt to measure OL.

Several factors make measuring OL difficult. The pipelining effect, the potential for over-
lapping consecutive communications, causes many of the inaccuracies [3]. In addition, the first
processor to begin the operation or the last processor to finish the operation is difficult to identify
in general, even with algorithmic knowledge. For example, consider a 15 task broadcast in
MPICH. Our model predicts that the last processor to finish the operation will be one of tasks 7,
11 and 13. The correct choice varies with each communication due to stochastic delays and over-
heads. This uncertainty makes it impossible to use an extension of the ping-pong test generally
used to measure overall point-to-point latency (o,+ L +o,). To overcome this difficulty, our
method measures the operation latency, OLi, to each destination, i, of the broadcast. The largest
of these measurements can be used as a reasonable estimate of OL.

Important aspects of the algorithm’s performance are omitted if we use only OL as our
benchmark, even if we measure OL accurately. OL measures how long it takes to accomplish the

Root (task 0):
t1 = current wallclock
for x = 1 to some large M

MPI-BCAST
t2 = current wallclock

Report (t, - tl)/M

Root (task 0):
t1 = current wallclock
for x = 1 to some large M

MPI-BCAST
MPI-BARRIER

t2 = current wallclock

Report (t2 - tl)/M

All other tasks:
for x = 1 to some large M

MPI-BCAST

All other tasks:
for x = 1 to some large M

MPI-BCAST
MPIBARRIER

Send Latency Benchmark Broadcast Barrier Benchmark

Task 0:
size = MPI-COMM-SIZE
t1 = current wallclock
for x = 1 to some large M

for root = 0 to size - 1
MPI-BCAST

t-2 = current wallclock

Root (task 0):
size = MPI-COMM-SIZE
t1 = current wallclock
for x = 1 to some large M

MPI-BCAST
for y = 0 to size - 1

MPI-RECV any ACK
t2 = current wallclock

Report (t2 - tl)/(M * N)
Report (t2 - tl)/M

All other tasks:
size = MPI-COP/IM_SIZE
for x = 1 to some large M

for root = 0 to size - 1
MPIBCAST

All other tasks:
for x = 1 to some large M

MPI-BCAST
MPI-SEND ACK to root

Broadcast Round Benchmark Broadcast Acknowledge Benchmark

Figure II: Broadcast Benchmark Methods

entire communication; each per processor overhead (Oi) measures how long that task cannot be
working on something else. As a result, the collective communication user is often as interested in
the oi values as OL. Users must know how long each processor is busy (Oi) and how long it takes
the data to reach that processor (OLi) in order to properly load balance an application. We present
a method to measure OLi in this paper. The per processor overheads can be measured with a
method similar to that used to measure the overhead of point-to-point communications [5].

Section 2: Previously Proposed Broadcast Benchmark Methods
In this section, we experimentally evaluate four previously proposed broadcast benchmark

methods, which are shown in Figure II. Our experiments use the MPICH binomial tree implemen-
tation and two linear broadcast implementations with which we replaced it. Our results from test-
ing these implementations with each of the proposed benchmark methods demonstrate that all of

I Binomial Tree -
Linear c

1200 Backward -

5 IO IS 20 2s 10
number of tasks

Figure III: Send Latency Benchmark
the methods are insufficient: three of them are inaccurate and the other is incomplete.

In a linear broadcast, the root sends to some task and returns. All other tasks wait to
receive from their preceding task and then return after sending the data on down the line (except
the last to receive the data, which simply returns). Our linear broadcast algorithms are two simple
variations of this algorithm. In our linear implementation, the preceding task of task i is task (i - 1)
mod group size; in our backward implementation, the preceding task of task i is task (i +l) mod
group size. Intuitively, it is clear that these two implementations are essentially identical. Algo-
rithmically, OL is a linear function of communicator size for these implementations, while it is a
logarithmic function of the communicator size for the binomial tree implementation.

We ran our tests in the batch partition of the technology refresh SP2 machine “blue” at
Lawrence Livermore National Laboratory. This machine is composed of 332 Mhz 604e 4-way
SMP nodes. At the time of our tests, the batch partition had 149 nodes and the operating system
was AIX 4.2.1. We compiled the various versions of MPICH for all tests with the -g option and
used the default optimization level. Our tests were run with either 16 tasks on 4 or 32 tasks on 8
nodes, with MPI tasks assigned cyclically to nodes and used IP for all MPI communication. Tests
with n tasks, with II less than the total number of tasks in the job, used the first n tasks. Thus, all
tests involved internode communication. Our test job was the only job running on those nodes,
although other jobs were concurrently using the network.

For all of our measurements, M = 150. Each data point of our graphs is the mean of several
[between 8 and 30) reported measurements; a test was stopped when the standard deviation of the
measurements was less than 3% of their mean. We found that tests that did not achieve the cut-off
point corresponded with higher measurements. Since we ran our tests in a production environ-
ment, it was not feasible to obtain exclusive access to the machine and the inability to achieve the
cut-off point indicated a heavily loaded network (one particular code makes extensive use of

time d

task Ih

task

0

1

2

3

root order = {0, 1,2,3}

I I

Figure IV: Order Dependence of Pipelining Effect
MPI~Alltoallv and, thus causes considerable network congestion). Except where noted, we
repeated all tests until we obtained one that achieved the cut-off point. Thus, our measurements
correspond to those that would be obtained with a lightly loaded network.

The send latency benchmark [1,2, also MPICH performance test suite] actually measures
go, the minimum interval between broadcasts at the root. There are several problems with this test.
Figure III shows the results obtained for our three broadcast implementations with a message size
of 256 bytes. Similar results are obtained for larger (64k) messages. As our experimental results
demonstrate, go is essentially constant for a linear broadcast. Thus, this benchmark could errone-
ously lead one to conclude that the linear broadcasts scale well.

Several researchers use the broadcast rounds benchmark method, which measures the
time to complete some large number of broadcast rounds [1,3,6]. A broadcast round consists of
one broadcast by each possible root. Unfortunately, the amount of pipelining is highly dependent
on the order used to cycle over the tasks, as Figure IV shows. Broadcast rounds accurately mea-
sure OL if the last node to receive the current broadcast is the root of the next broadcast, as is the
case for a linear broadcast if the roots are cycled in the opposite order of the broadcast. However,
the pipelining effect is significant if the roots are cycled in the same order. In general, the broad-
cast rounds benchmark does not provide an accurate measurement with any root order since the
last task to receive the broadcast is stochastically determined for most algorithms. Figure V shows
our experimental results for a 256 byte broadcast, using the root order (0, l,..., size-l]. Results for
a 64k broadcast are similar. Algorithmic analysis indicates that the pipelining effect is also signif-
icant with the binomial tree implementation. Our results demonstrate that the broadcast rounds
method is inaccurate, although it does provide a reliable lower bound of OL.

We note that the broadcast rounds benchmark does not scale well. Even if the number of
rounds (M) is reduced, the method has a tendency to flood the network. This may explain why we
were unable to obtain data points that achieved our cut-off point of standard deviation < 3% of
mean for the binomial tree implementation with 12 or more tasks or for the linear implementation
with more than 20 tasks. We view this poor scaling as an additional drawback of the method.

I Binomial Tree +
Linear +

4oMl.

2c4x

&.l /

0
5 10 15 20 25 1”

number of nodes

Figure V: Broadcast Rounds Benchmark

The broadcast barrier method measures the time required for some large number of
broadcast-barrier pairs [9]. This method eliminates the pipelining effect since the barriers ensure
that two broadcasts are never in progress concurrently. Thus, it provides a reliable upper bound on
OL. Unfortunately, measuring barrier latency, like OL for a broadcast, is difficult. In addition,
even if an accurate measurement of the barrier cost were available, we could not simply subtract it
from the broadcast measure since a broadcast can overlap with the barrier before or after it.

We used the linear barrier shown in Figure VI to test the broadcast-barrier method. In our
linear barrier, communication starts with task 0 and travels twice around the task ring. The barrier
finishes the second time that the communication reaches task n - 2, when all tasks are guaranteed
that all other tasks have reached the barrier. Figure VII shows two sets of results: in the upper
graphs, the linear barrier uses messages that are the same size as the broadcast messages; in the
lower graphs, the barriers use the zero length messages. All graphs also show the results obtained

time -

Figure VI: Inefficient Barrier Implementation

tim
e

(m
icrosec.)

tim
e ~m

icrosec.)

tim
e

(m
icrosec.)

tt”t

Binomial Tree -
Linear -

Backward +

s IO IS 20 2s
number of tasks

Figure VIII: Broadcast Acknowledge Benchmark

30

with MPICH’s standard binomial tree algorithm and hypercube barrier implementation. Our
results demonstrate several problems for this method. The cost of the barrier can dominate the
measurement. Since the barriers can overlap with the broadcasts, we cannot simply subtract some
measure of the broadcast performance. Finally, the barrier implementation may not be under the
control of the benchmarker.

The hroadcasr acknowledge method is a variation of the broadcast barrier method [S]. In
this method, the barriers are replaced by acknowledgments explicitly sent to the root. Like the
broadcast barrier method, the broadcast acknowledge method provides a reliable upper bound on
OL since the root does not begin the next broadcast until it has received an acknowledgment from
every other task. Unlike the broadcast barrier method, the broadcast acknowledge method always
evaluates different broadcast implementations with the same (pseudo) barrier. The results for a
256 byte broadcast shown in Figure VIII demonstrate that this method has potential. However, a
broadcasts can still proceed concurrently with the (pseudo) barriers that surround it. Since the
amount of overlap varies with the broadcast implementation, it is not possible to accurately cor-
rect for the overhead introduced by the acknowledgments. Also, this overhead increases linearly
with communicator size and will probably dominate the measurement with large communicators.

Section 3: An Accurate Broadcast Benchmark Method
Our method accurately measures broadcast performance because we do not attempt to

measure OL. Instead, we observe that a method can be designed that accurately measures OLi,
the operation latency for an individual task i. We can use the maximum of these measurements as
a reasonable estimate of OL in order to provide a succinct measure of performance as the number
of tasks increases and for comparison purposes to other broadcast benchmark methods.

tl = Current wallclock
for x = 1 to some large M

MPI-SEND to i
MPI-RECV from i

t2 = current wallclock
RTLi = (tz - tl)/M

MPI-BARRIER
MPI-BCAST
MPI-RECV ACK from 1

tl = current wallclock
for X = 1 t0 SCXMZ large M

MPI-BCAST
MPI-RECV ACK from i

t2 = Current wallclock
Ei = (t2 - tl)/M

Report OLi = Ei - (RTLi,2)

for x = 1 to some large M
MPI-RECV from rc,ot
MPI-SEND to root

for x = 1 to some large M + 1
MPI-BCAST
MPI-SEND ACK to root

Root (task 0)
Figure IX: OLi Benchmark Method

method
Figure IX shows our method for measuring OLi, which we repeat for each possible i. Our
works for a simple reason - it eliminates the pipelining effect only along the broadcast

path from the root to the task i. Broadcasts that are concurrently in progress along other paths do
not affect our measurement. Our method relies on the assumptions that the acknowledgment to

9ooo-
max(OLi) method -

Broadcast acknowledge +
Broadcast barrier +
Broadcast rounds x

Current task i

for X = 1 to SOII,~ large M + 1
MPI-BCAST

All other tasks

2 3 4 s 6 7
numberoftasks

Figure X: initial Comparison of Benchmark Methods

the root arrives at the root after the broadcast has finished at the root and that no task j on i’s
broadcast path must delay the next broadcast. These assumptions hold if the measured time, Ei is
greater than the broadcast gap, gj for any task j, including the root, on i’s broadcast path, which is
true for most broadcast implementations. Nonetheless, some implementations, such as a flat
broadcast in which the root sends directly to every other task, can violate this assumption.

We can prove our measurement of OLi is accurate if Ei is greater than any of the broadcast
gaps, which holds for all of our OLi measurements for the implementations that we discuss. We
have designed a method for measuring OLi accurately when this assumption is violated. The
benchmarker must know i’s broadcast path in order to use this method. This information is clearly
available to the library implementer; we are currently designing a method to determine the com-
munication pattern of an implementation when source code is unavailable.

Due to a major hardware and software upgrade, our test platform became unavailable as
we were preparing this paper. This upgrade will double the number of nodes and change the OS
version. We will rerun our results under the new configuration for the full paper. Initial results on
a older and smaller SP2 confirm that our method provides an accurate estimate of OL. Figure X
shows that our estimates of OL for the binomial tree implementation always fall between the
lower bound provided by the broadcast rounds method and the upper bounds obtained from the
broadcast barrier and broadcast acknowledge methods. The full paper will include results using
our method for all three broadcast implementations and extend Figure X to at least 64 nodes.

Section 4: Conclusions
Broadcast communication is an important factor in the performance of message passing

applications. Therefore, reliable measurement of broadcast performance is an important criteria
for evaluating message passing libraries. Previously proposed broadcast benchmark methods were
inaccurate. We have presented an new and accurate broadcast benchmark method.

Our methodology is accurate and reliable for implementers of broadcast algorithms. When
implementation source code is unavailable (i.e. when a “black box” methodology is required), it is
easy to determine when our measurements may be inaccurate. Further, we expect to extend our
methodology to an accurate and reliable “black box” methodology.

Section 5: References
[l] G.A. Abandah, “Modeling the Communication and Computation Performance of the IBM
SP2,” Muster’s Thesis, University of Michigan, 1995.

[2] G.A. Abandah and E.S. Davidson, “Modeling the Communication Performance of the IBM
SP2,” Proc. of the 10th International Parallel Processing Symp., 1996.

[3] M. Bernaschi and G. Iannello, “Collective communication operations: experimental results vs.
theory,” Concurrency: Practice and Experience, 1998, Vol. 10, No. 5, pp. 359-386.

[4] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian
and T. von Eicken, “LogP: Towards a Realistic Model of Parallel Computation,” Proc. of the 4th
ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming, 1993, pp. l- 12.

[5] D.E. Culler, L.T. Liu, R.P. Martin and C.O. Yoshikawa, “Assessing Fast Network Interfaces,”
IEEE Micro, 1996, Vol. 16, No. 1, pp. 35-43.

[6] l? Husbands and J.C. Hoe, “MPI-StarT: Delivering Network Performance to Numerical Appli-
cations,” Proc. of the 1998 ACM/IEEE SC98 Conference, 1998.

[7] R.M. Karp, A. Sahay, E. Santos and K.E. Schauser, “Optimal Broadcast and Summation in the
LogP Model,” Proc. of the 5th Annual Symp. on Parallel Algorithms and Architectures, 1993,
pp. 142-153.

[8] P.J. Mucci and K.S. London, “Low Level Architectural Characterization Benchmarks for Par-
allel Computers,” Tech. Report ut-cs-98-394, University of Tennessee, 1998.

[9] R.H. Reussner, “User Manual of SKaMPI, Special Karlsruher MPI-Benchmark,” Tech. Report,
University of Karlsruhe, 1998.

